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Abstract. We show that the Hausdorff dimension of any slice of the Takagi function
Tλ is bounded above by dimA(Tλ) − 1, and that the bound is sharp. The result is
deduced from a statement on more general self-affine sets, which is of independent
interest. We also prove that if the lower pointwise dimension of every projection of
the length measure on the x-axis lifted to the Takagi function is at least one, then
dimA(Tλ) = dimH(Tλ) and Marstrand’s slicing theorem extends to all slices.

1. Introduction

The Takagi function Tλ : [0, 1]→ R for the parameter 1
2 < λ < 1 is defined by setting

Tλ(x) =

∞∑
n=0

λn dist(2nx,Z) (1.1)

for all x ∈ [0, 1]. In mathematical writing it is customary to distinguish a function
from its graph. Notwithstanding, we stick to the definition of a function as a total and
univalent binary relation which in our case is convenient notation-wise as then Tλ denotes
both the function and its graph. The Takagi function, being continuous yet having at no
point a finite derivative, is one of the famous examples of “pathological functions”. For
the basic properties of the Takagi function and a summary of recent research the reader
is referred to the surveys of Allaart and Kawamura [6] and Lagarias [27].

Level sets of the Takagi function, i.e. the sets of points x ∈ R at which Tλ(x) equals
a given value, have been studied extensively; see [2–5,14,15,28,29,31]. Such level sets
appear as horizontal slices of Tλ meaning that they are intersections Tλ∩(V +x), where V
is the x-axis and x ∈ R2. When λ = 1

2 , it has been proven that the Hausdorff dimension of

slices with integer slope is at most 1
2 , and the bound is attained by some slice; see [16,33].

In this paper, we obtain a sharp bound for the Hausdorff dimensions of all slices of Tλ,
when 1

2 < λ < 1, in terms of the Assouad dimension of Tλ.
The study of the dimensions of slices has a rich history. The classical Marstrand’s

slicing theorem [35] shows that almost every fiber of a projection does not store more
dimension than what is the surplus. We denote the Hausdorff dimension by dimH and
the collection of all lines in R2 passing through the origin by RP1. The slicing theorem
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states that, given a Borel set X ⊂ R2 and V ∈ RP1, we have

dimH(X ∩ (V + x)) 6 max{0, dimH(X)− 1} (1.2)

for Lebesgue almost all x ∈ V ⊥. Often when the set X has some additional arithmetic or
geometric structure, stronger statements can be made about dimensions of all slices. For
example, if X = A×B where A and B are invariant under the maps x 7→ 2x mod 1 and
x 7→ 3x mod 1, then the bound in (1.2) holds for all slices, except those in the directions
of the coordinate axes. This celebrated result was first conjectured by Furstenberg [21]
and recently proved independently and simultaneously by Shmerkin [39] and Wu [40].

The Takagi function is an example of a self-affine set. For many sets in this class, the
Hausdorff dimensions of slices are closely connected to the Assouad dimensions of the
sets; see Section 2 for the relevant definitions. This was first observed by Mackay [32],
who expressed the Assouad dimensions of a special class of self-affine sets called Bedford-
McMullen carpets in terms of the dimensions of their projections on the x-axis and the
dimensions of their slices in the direction of the y-axis. Algom [1] showed that the box
dimensions of all slices, which are not in the direction of the x- or y-axes, of certain
Bedford-McMullen carpetsX, are bounded above by max{0,dimA(X)−1}. Here dimA(X)
denotes the Assouad dimension of X and is always bounded from below by the Hausdorff
dimension. Recently, Bárány, Käenmäki, and Yu [10, Theorem 1.3] showed that a similar
phenomenon is also present for certain totally disconnected self-affine sets. In fact, in the
class of self-affine sets they consider, the upper bound max{0, dimA(X)− 1} is achieved
and there are examples of self-affine sets in this class for which dimH(X) < dimA(X).
However, since the Takagi function is connected, the results in [10] do not apply.

Utilizing the self-affinity of the Takagi function, Bárány, Hochman, and Rapaport [7,
Corollary 7.6] proved that

dimH(Tλ) = 2 +
log λ

log 2
< 2; (1.3)

see also Ledrappier [30]. The Assouad dimension of the Takagi function was studied
by Yu [41] in some special cases. He showed that there exist parameters for which the
Assouad dimension is strictly larger than the Hausdorff dimension and in the online
version of the paper, he also conjectured that dimA(Tλ) = 2 for all 1

2 < λ < 1. The
following result is the first main result of the paper.

Theorem 1.1. If Tλ is the Takagi function, then

max
x∈Tλ
V ∈RP1

dimH(Tλ ∩ (V + x)) = dimA(Tλ)− 1 < 1

This theorem is based on a result for a more general class of self-affine sets, Theorem
4.1, which generalizes the results in [9, §5] and [10, §5].

As our second main result, we investigate when the bound (1.2) of Marstrands slicing
theorem can be extended to all slices of the Takagi function. By Theorem 1.1, this
happens precisely when dimA(Tλ) = dimH(Tλ). For a given t ∈ R, let projt : R2 → R,
projt(x1, x2) = (x1, x2) · (t, 1). The pushforward of a measure µ is denoted by f∗µ
whenever f is a measurable mapping. We let ν = (Id, Tλ)∗L1 be the Lebesgue measure
L1 lifted to the Takagi function Tλ. Denote the lower pointwise dimension of a measure
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µ at x by dimloc(µ, x). It follows from (1.2) and (1.3), that

dimloc(projt∗ν, projt(x)) > 1

for ν-almost all x ∈ Tλ and Lebesgue almost all t ∈ R. The following is the second main
result of the paper, where we show that if this lower bound holds for all x and t, then
(1.2) is extended to all slices.

Theorem 1.2. If Tλ is the Takagi function and ν = (Id, Tλ)∗L1 is the Lebesgue measure
L1 lifted to the Takagi function Tλ, then

max
x∈Tλ
V ∈RP1

dimH(Tλ ∩ (V + x)) = 1 +
log λ

log 2

if and only if

dimloc(projt∗ν, projt(x)) > 1

for all x ∈ Tλ and t ∈ [−
∑

k∈N 2−kλ−k,
∑

k∈N 2−kλ−k].

The rest of the paper is organized as follows. In Section 2 we recall some basic results
in dimension theory and establish the general setting of self-affine sets we will be working
with. The results in the general setting are presented in Sections 3 and 4. We will then
specialize to the Takagi function and prove Theorem 1.1 in Section 5 and Theorem 1.2 in
Section 6.

2. Notation and preliminaries

2.1. Dimensions and weak tangents. Let us briefly recall definitions of some of the
basic notions of dimension used in fractal geometry. The Hausdorff dimension of a set
X ⊂ R2 is

dimH(X) = inf{s > 0: for every ε > 0 there is {Ui}i∈N such

that X ⊂
⋃
i∈N

Ui and
∑
i∈N

diam(Ui)
s < ε}.

The lower and upper pointwise dimensions of a Borel measure µ at x ∈ R2 are

dimloc(µ, x) = lim sup
r↓0

logµ(B(x, r))

log r
,

dimloc(µ, x) = lim inf
r↓0

logµ(B(x, r))

log r
,

respectively. We assume familiarity with the basic properties of the Hausdorff dimension
and pointwise dimensions, and how they are connected; see for example [17, 36]. If X is
bounded, then the r-covering number of X,

Nr(X) = min{k ∈ N : X ⊂
k⋃
i=1

B(xi, r) for some x1, . . . , xk ∈ R2},
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is the least number of closed balls of radius r > 0 needed to cover X. The lower and
upper Minkowski dimensions of a bounded set X ⊂ R2 are

dimM(X) = lim inf
r↓0

logNr(X)

− log r
,

dimM(X) = lim sup
r↓0

logNr(X)

− log r
,

respectively. In the case that the limit exists, it is denoted by dimM(X) and called the
Minkowski dimension of X. The Assouad dimension of X ⊂ R2 is

dimA(X) = inf{s > 0: there exists C > 0 such that

for every x ∈ X and 0 < r < R

it holds that Nr(X ∩B(x,R)) 6 C(Rr )s}.

The Assouad dimension is designed to capture the extremal scaling behaviour of the
set by quantifying the size of the least doubling parts of the set in question. The basic
inequality we will use repeatedly is

dimH(X) 6 dimM(X) 6 dimM(X) 6 dimA(X)

for all bounded sets X ⊂ R2. For the proof of this and other basic properties of the
Assouad dimension, we refer to [18].

The concept of weak tangents has proven to be very useful in the study of the Assouad
dimension. Let X be a compact subset of R2. For x ∈ X and r > 0 we denote by
Mx,r : R2 → R2 the linear map

Mx,r(y) =
y − x
r

.

Note that Mx,r(B(x, r)) = B(0, 1). A set T which intersects the interior of B(0, 1) is
called a weak tangent of X if there are a sequence (xn)n∈N of points in X and a sequence
(rn)n∈N of positive real numbers converging to 0 such that

Mxn,rn(X) ∩B(0, 1)→ T,

in Hausdorff distance. The collection of all weak tangents of X is denoted by Tan(X).
It is easy to see that a dimension of a weak tangent is a lower bound for the Assouad
dimension of X ⊂ R2, i.e. dimA(X) > dimA(T ) for all T ∈ Tan(X); see e.g. [19, Theorem
5.1.2]. Käenmäki, Ojala, and Rossi [26, Proposition 5.7] proved the following stronger
result, which shows that the Assouad dimension of a compact set is realized by the
maximal Hausdorff dimension of its weak tangents.

Lemma 2.1. If X ⊂ R2 is compact, then dimA(X) = max{dimH(T ) : T ∈ Tan(X)}.

The result introduces a way to obtain an upper bound for the Assouad dimension by
bounding the Hausdorff dimension of every weak tangent.
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2.2. Real projective line and matrices. Define an equivalence relation ∼ on R2 \ {0}
by setting v ∼ w if and only if v = cw for some c ∈ R. Denote the equivalence class
of v ∈ R2 \ {0} under this relation by 〈v〉. An elementary observation is that for any
0 6= c ∈ R and v ∈ R2 \ {0} we have 〈cv〉 = 〈v〉. Geometrically, 〈v〉 = {w ∈ R2 : w =
cv and c ∈ R} ⊂ R2 is a line in R2 in the direction of v passing through the origin. The
real projective line is RP1 = {〈v〉 : v ∈ R2 \ {0}}. An element of RP1 is called a line. If
the representative of an element of RP1 is left implicit, we use capital letters such as V
or W to refer to the element. We let ^ : RP1 → RP1 denote the metric on RP1 given by

^(〈v〉, 〈w〉) = arccos

(
|v · w|
‖v‖‖w‖

)
= arcsin

(
‖v ∧ w‖
‖v‖‖w‖

)
,

where v ·w and v ∧w denote the inner product and exterior product of the vectors v and
w, respectively. In other words, the distance between two lines is given by the smaller of
the angles between them. A ball in this metric is called a projective interval. With the
topology induced by the metric, the map v 7→ 〈v〉 from R2 \ {0} to RP1 is continuous.

The group of invertible 2× 2 matrices is denoted by GL2(R). A matrix A ∈ GL2(R)
induces an action on RP1 by

A〈v〉 = 〈Av〉.
For any V ∈ RP1, we denote by projV : R2 → V the orthogonal projection onto the
subspace V , that is, projV is the unique linear map satisfying projV |V = Id|V and
ker(projV ) = V ⊥. It is easy to see, consult e.g. [25, Lemma 2.1], that a rank one 2× 2
matrix A is bi-Lipschitz equivalent to projker(A)⊥ .

The singular values α1(A) and α2(A) of a matrix A ∈ GL2(R) are the square roots
of the non-negative eigenvalues of the positive definite matrix A>A, ordered so that
α1(A) > α2(A). Note that α1(A) and α2(A) are the lengths of the semiaxes of the ellipse
A(B(0, 1)). If A ∈ GL2(R) is such that α1(A) > α2(A), then we let η1(A) be one of the two
unit eigenvectors of A>A corresponding to the eigenvalue α1(A)2. If α1(A) = α2(A), then
we write η1(A) = S1 = {x ∈ R2 : |x| = 1}. Observe that α1(A) = ‖A‖ = ‖A|〈η1(A)〉‖,
α2(A) = ‖A−1‖−1 = ‖A−1|〈η1(A−1)〉‖−1, and α1(A)α2(A) = |det(A)|.

2.3. Self-affine set and shift space. An iterated function system (IFS) is a finite
tuple of contractive maps Φ = (ϕ1, . . . , ϕN ) acting on R2. By a classical result of
Hutchinson [22], Φ admits a unique non-empty compact set, denoted by X, satisfying

X =
N⋃
i=1

ϕi(X).

We call X the limit set of Φ. We say that Φ is an affine IFS if the maps ϕi are affine,
i.e. ϕi(x) = Aix+ bi, where Ai ∈ GL2(R) and bi ∈ R2. In this case, the corresponding
limit set is called a self-affine set. We use the convention that whenever we speak about
a self-affine set X, then it is automatically accompanied with a tuple of affine maps
which defines it. A self-affine set is said to satisfy the strong separation condition (SSC)
if ϕi(X) ∩ ϕj(X) = ∅ for all i 6= j, and the strong open set condition (SOSC) if there
exists an open set U such that X ∩ U 6= ∅, ϕi(U) ⊂ U for all i ∈ {1, . . . , N}, and
ϕi(U) ∩ ϕj(U) = ∅ whenever i 6= j.
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Given an IFS, we consider the symbolic representation of the limit set X as follows.
Let Σ = {1, . . . , N}N denote the collection of all infinite words obtained by concatenating
digits in {1, . . . , N}. Similarly, Σn = {1, . . . , N}n is the set of finite words of length
n ∈ N, and Σ∗ =

⋃
n∈N Σn is the set of finite words of any length. Given i = i1i2 · · · ∈ Σ,

we define i|n = i1 · · · in to be the restriction of i to its first n indices, and given

i = i1 · · · in ∈ Σn, let i− = i|n−1 = i1 · · · in−1 ∈ Σn−1 and
←−
i = in · · · i1 be the word

obtained from i by reversing the order of its digits. The concatenation of two words
i ∈ Σ∗ and j ∈ Σ∗ ∪ Σ is denoted by ij. Given i ∈ Σ∗, the infinite word obtained by
concatenating i with itself infinitely many times is denoted by i, that is, i = ii · · · .
For two finite or infinite words i and j, their longest common prefix is denoted by
i ∧ j, and the length of a word i is denoted by |i|. We define σ : Σ → Σ by setting
σi = σ(i) = i2i3 · · · for all i = i1i2 · · · ∈ Σ, and call it the left shift. Given n ∈ N and
i ∈ Σn, we define the cylinder set by [i] = {j ∈ Σ: j|n = i}. The shift space Σ is a
compact topological space in the topology whose base is the collection of all cylinder sets.
Alternatively, a metric % on Σ defined by

%(i, j) = 2−|i∧j|,

with the interpretation that 2−∞ = 0, induces the same topology as the open balls in
this metric are precisely the cylinder sets. It is also worth pointing out that the cylinder
sets are open and closed in this topology and generate the Borel σ-algebra. A map
f : Σ→M , where (M,d) is a metric space, is Hölder continuous, if there are constants
C,α > 0 such that

d(f(i), f(j)) 6 Cα|i∧j|,

for all i, j ∈ Σ. Finally, for a given IFS (ϕ1, . . . , ϕN ) and its limit set X, we define the
canonical projection π : Σ→ X by setting

πi = π(i) = lim
n→∞

ϕi1 ◦ · · · ◦ ϕin(0̄)

for all i = i1i2 · · · ∈ Σ, where 0̄ = (0, 0). It is evident that π is Hölder continuous.

2.4. Semigroup and domination. Understanding the semigroup generated by A =
(A1, . . . , AN ) ∈ GL2(R)N is crucial in the study of self-affine sets. In this context, it is
rather standard practise to use Σ∗ to index the elements in the semigroup. Indeed, we
write

Ai = Ai1 · · ·Ain
for all i = i1 · · · in ∈ Σn and n ∈ N. Our standing assumption is that A is dominated,
that is, there exist constants C > 0 and 0 < τ < 1 such that

α2(Ai) 6 Cτ
|i|α1(Ai) (2.1)

for all i ∈ Σ∗. Domination ensures that when iteratively applying the matrices in A to
the unit ball, the resulting ellipses get thinner and thinner at an exponential rate. We say
that a self-affine set X is dominated if the tuple consisting of the linear parts of the maps
in the associated affine IFS is. A proper subset C ⊂ RP1 is called a multicone if it is a
finite union of closed projective intervals. A multicone C ⊂ RP1 is strongly invariant for
A if AiC ⊂ C◦ for all i ∈ {1, . . . , N}, where C◦ denotes the interior of C. By [12, Theorem
B], A admits a strongly invariant multicone if and only if A is dominated. It is a simple
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fact that if C is a strongly invariant multicone for A, then RP1 \ C is a strongly invariant
multicone for A−1 = (A−1

1 , . . . , A−1
N ). Write

A>←−
i

= (A←−
i

)> = A>i1 · · ·A
>
in ,

A−1
←−
i

= (A←−
i

)−1 = A−1
i1
· · ·A−1

in
,

and let

ϑ1(i) = 〈Aiη1(Ai)〉,
ϑ2(i) = 〈A−1

←−
i
η1(A−1

←−
i

)〉,

for all i ∈ Σn and n ∈ N. The geometric interpretation is that ϑ1(i) and ϑ2(i) correspond
to the orientation of the principal semiaxis of the ellipses Ai(B(0, 1)) and A−1

←−
i

(B(0, 1)),

respectively. We also define

ϑk(i) = lim
n→∞

ϑk(i|n)

for all i ∈ Σ and k ∈ {1, 2} whenever the limit exists. The following lemma guarantees
that under domination, the limit exists at every point and therefore, we have defined a
map ϑk : Σ→ RP1.

Lemma 2.2. If A = (A1, . . . , AN ) ∈ GL2(R)N is dominated and C ⊂ RP1 is a strongly
invariant multicone for A, then, for k ∈ {1, 2},

(1) the limit ϑk(i) = limn→∞ ϑk(i|n) exists for all i ∈ Σ and the convergence is
uniform,

(2) the map ϑk : Σ→ RP1 is Hölder continuous,
(3) the set ϑk(Σ) is compact and contains the accumulation points of {ϑk(i) : i ∈ Σ∗},
(4) Aiϑ1(j) = ϑ1(ij) and A−1

←−
i
ϑ2(j) = ϑ2(ij) for all i ∈ Σ∗ and j ∈ Σ,

(5) ϑ1(Σ) ⊂ C◦ and ϑ2(Σ) ⊂ RP1 \ C.

Proof. For k = 1, the claims (1), (3), and (4) are proved in [38, Lemma 2.1] and (5)
follows from the definition of the strongly invariant multicone. One can repeat the proofs
for the dominated tuple A−1 = (A−1

1 , . . . , A−1
2 ) to obtain the claims for k = 2. Similarly,

it suffices to prove (2) for k = 1.
To that end, let i ∈ Σ, m ∈ N, and

θm = ^(ϑ1(i|m), ϑ1(i|m+1)).

In the proof of [24, Lemma 2.1], it was shown that there is c > 1 not depending on m
such that

sin(θm) 6 c
α2(Ai|m)

α1(Ai|m)
.

Since ϑ1(i|m) → ϑ1(i) as m → ∞ there exists n0 ∈ N such that for every m > n0 we
have θm 6 2 sin(θm) and, by recalling the definition of domination from (2.1),

^(ϑ1(i|n), ϑ1(i)) 6
∞∑
m=n

θm 6 2c

∞∑
m=n

α2(Ai|m)

α1(Ai|m)
6 2cC

∞∑
m=n

τm =
2cC

1− τ
τn
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for all n > n0. For every i, j ∈ Σ with n = |i ∧ j| > n0, we thus have

^(ϑ1(i), ϑ1(j)) 6 ^(ϑ1(i), ϑ1(i|n)) + ^(ϑ1(i|n), ϑ1(j)) 6
4cC

1− τ
τ |i∧j|

and the map ϑ1 : Σ→ RP1 is Hölder continuous. �

For a dominated matrix tuple A = (A1, . . . , AN ) ∈ GL2(R)N , the sets

YF = {im(A) ∈ RP1 : A ∈ {cAi : c ∈ R and i ∈ Σ∗} has rank one},

XF = {im(A) ∈ RP1 : A ∈ {cA−1
←−
i

: c ∈ R and i ∈ Σ∗} has rank one},

are the collections of forward and backward Furstenberg directions, respectively. The
following lemma gives useful characterizations for the sets XF and YF .

Lemma 2.3. If A = (A1, . . . , AN ) ∈ GL2(R)N is dominated and C ⊂ RP1 is a strongly
invariant multicone for A, then

YF = ϑ1(Σ) =
∞⋂
n=1

⋃
i∈Σn

AiC and XF = ϑ2(Σ) =
∞⋂
n=1

⋃
i∈Σn

A−1
←−
i
RP1 \ C.

Proof. We prove the claims for YF and note that the claims for XF follow similarly
by considering the dominated tuple A−1 = (A−1

1 , . . . , A−1
N ). Let us first show that

YF ⊂ ϑ1(Σ). To that end, let V ∈ YF and choose a sequence (in)n∈N of finite words and
a sequence (cn)n∈N of real numbers such that cnAin → A and im(A) = V . By passing to
a sub-sequence if necessary, we may assume that

η1(Ain)→ η

for some η ∈ S1. Since the maps Ain are linear and supn∈N ‖cnAin‖ <∞, it follows from
the Banach-Steinhaus theorem that cnAinη1(Ain)→ Aη and therefore,

‖Aη‖ = lim
n→∞

cn‖Ainη1(Ain)‖ = lim
n→∞

cn‖Ain‖ = ‖A‖.

In particular ‖Aη‖ > 0, so Aη is a non-zero vector in im(A). Thus, by the continuity of
the map v 7→ 〈v〉,

V = im(A) = 〈Aη〉 = lim
n→∞

〈cnAinη(Ain)〉 = lim
n→∞

ϑ1(in),

and V ∈ ϑ1(Σ) by Lemma 2.2(3).
Let us then show that ϑ1(Σ) ⊂

⋂∞
n=1

⋃
i∈Σn

AiC. Fix V ∈ ϑ1(Σ) and let i ∈ Σ be

such that ϑ1(i) = V . Observe that, by Lemma 2.2(4),

ϑ1(i) = Ai|nϑ1(σni)

for all n ∈ N. Since, by Lemma 2.2(5), ϑ1(σni) ∈ C for all n ∈ N, we have

V ∈
∞⋂
n=1

⋃
i∈Σn

AiC

as required.
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Finally, let us show that
⋂∞
n=1

⋃
i∈Σn

AiC ⊂ YF . To that end, suppose that V ∈⋂∞
n=1

⋃
i∈Σn

AiC. Then for any n ∈ N, we may choose in ∈ Σn and Vn ∈ C, such that
V = AinVn. Let vn be a unit vector such that Vn = 〈vn〉. Note that the set

S = {A ∈ GL2(R) : ‖A‖ = 1}
is a compact subset of GL2(R). By passing to a sub-sequence if necessary, we may assume
that vn → v for some v ∈ S1 and

Ain

‖Ain‖
→ A

for some A ∈ S. Now, by recalling the definition of domination from (2.1), there exist
C > 0 and 0 < τ < 1 such that

| det(‖Ain‖−1Ain)| = α1(Ain)α2(Ain)

‖Ain‖
=
α2(Ain)

α1(Ain)
6 Cτn.

Consequently, det(A) = 0, which together with ‖A‖ = 1, implies that rank(A) = 1.
Recall that, by [13, Lemma 2.3], there is a positive constant κ such that

‖Ainvn‖ > κ‖Ain‖‖vn‖ = κ‖Ain‖
for all n ∈ N. Since the maps Ain are linear, it follows from the Banach-Steinhaus
theorem that ‖Ain‖−1Ainvn → Av and therefore,

‖Av‖ = lim
n→∞

‖Ainvn‖
‖Ain‖

> κ

and Av is a non-zero vector in im(A). Thus, by the continuity of the map v 7→ 〈v〉,
V = lim

n→∞
AinVn = lim

n→∞
〈Ainvn〉 = 〈Av〉 = im(A) ∈ YF .

Therefore, V ∈ YF and the proof is finished. �

2.5. Bounded neighborhood condition. To finish this section, we introduce a geo-
metric separation condition for self-affine sets, which we call the bounded neighborhood
condition. We remark that a similar condition has already been introduced in [23]. We
also define a weaker variant which allows exact overlaps in the construction. Let X be a
self-affine set and

Φ(x, r) = {ϕi : α2(Ai) 6 r < α2(Ai−) and ϕi(X) ∩B(x, r) 6= ∅}
for all x ∈ X and r > 0. We say that X satisfies the weak bounded neighborhood condition
(WBNC), if

sup
x∈X
r>0

#Φ(x, r) <∞.

Furthermore, X satisfies the bounded neighborhood condition (BNC) if it satisfies the
WBNC and ϕi 6= ϕj whenever i, j ∈ Σ∗ such that i 6= j. It turns out that if the SSC is
not satisfied, then the WBNC is the right separation condition in studying the tangent
structure of X. Let us comment on how the BNC and the WBNC are related to other
separation conditions. It is not difficult to see that the SSC implies the BNC, but in the
examples to follow, we show that the OSC and the BNC are independent of one another.
We will give an example of a self-affine set satisfying the SOSC but not the BNC later in
Example 3.3, since it also shows that it is not possible to replace the WBNC with the
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SOSC in the assumptions of the main result of Section 3. The following is an example of
a self-affine set satisfying the BNC but not the OSC.

Example 2.4. We give an example of a self-affine set which does not satisfy the OSC, but
satisfies the BNC. Consider the IFS {ϕi}3i=1, where

ϕ1 =

(
1
2 0
0 1

8

)
, ϕ2 =

(
1
4 0
0 1

8

)
+

(
1
4
0

)
, ϕ3 =

(
1
4 0
0 1

8

)
+

(
3
4
0

)
Let us briefly argue why the self-affine set X corresponding to this IFS does not satisfy
the OSC. Since (1, 0) is the fixed point of ϕ3, it is easy to show that any open set U ,
which is mapped inside itself by ϕ3, must contain some open rectangle R = (a, 1)× (0, a),
and then a simple calculation shows that ϕ1(R) ∩ ϕ2(R) 6= ∅.

Next we sketch why X satisfies the BNC. Let Pn = {[m4n ,
m+1
4n ) : m = 0, . . . , 4n − 1}

denote the quadratic partition of the unit interval. By construction, it is easy to see that
for any I ∈ Pn, there are at most two i, j ∈ Σn, i 6= j, such that ϕi(X)∩ I× [0, 8−n] 6= ∅
and ϕj(X) ∩ I × [0, 8−n] 6= ∅.

Now let x ∈ X, r > 0 and choose n ∈ N such that 8−n 6 r < 8−n+1. Since
α2(Ai) = 8−n, for all i ∈ Σn, we have

Φ(x, r) = {i ∈ Σn : ϕi(X) ∩B(x, r) 6= ∅}.

Note that for n > 3, we have 8−n+1 < 4−n, so B(x, r) intersects at most two of the
intervals in Pn, and therefore, #Φ(x, r) 6 4 by our previous argument.

Remark 2.5. It is even easier to construct self-affine sets which do not satisfy the OSC,
but satisfy the WBNC: take a self-affine carpet generated by the IFS

ϕ1 =

(
a 0
0 b

)
, ϕ2 =

(
a 0
0 b

)
+

(
1− a

0

)
,

where a > b and whose projection to the x-axis satisfies the weak separation condition
but not the OSC.

3. Tangent decompositions and slices

We begin to study the structure of weak tangent sets of dominated self-affine sets
satisfying the bounded neighborhood condition. In the presence of the WBNC, we show
the existence of tangent decompositions and demonstrate how they can be used to study
slices of the set. Our main observation in this section is the following proposition which
generalizes Bárány, Käenmäki, and Rossi [9, Theorem 5.2]. By A+ x we mean the set
{a+ x : a ∈ A} for all A ⊂ R2 and x ∈ R2.

Proposition 3.1. If X is a dominated self-affine set satisfying the WBNC, then for
every T ∈ Tan(X) there exist x ∈ X and V ∈ XF such that

dimH(T ) 6 1 + dimH(X ∩ (V + x)).

In particular,

dimA(X) 6 1 + sup
x∈X
V ∈XF

dimH(X ∩ (V + x)).
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In Example 3.3, we show that the proposition can fail if the WBNC is not satisfied
and in fact, this is even possible under the SOSC. In particular, the previous proposition
is not true if one replaces the WBNC by the SOSC.

The proof of Proposition 3.1 relies on finding suitable decompositions of the tangents
of self-affine sets into finitely many components, where each component can be affinely
mapped to a slice of the original set. This is made formal by the following lemma.

Lemma 3.2. If X is a self-affine set satisfying the WBNC and T ∈ Tan(X), then there
exists a finite index set I such that for every i ∈ I there is a set Ti ⊂ T , a point yi ∈ X,
and a linear map Gi for which

(1) T =
⋃
i∈I Ti,

(2) rank(Gi) > 1,
(3) Gi(Ti) + yi ⊂ X.

Furthermore, if X is dominated, then rank(Gi) = 1 and im(Gi) ∈ XF for all i ∈ I.

Proof. Let T ∈ Tan(X). By definition, we may choose a sequence (in)n∈N of infinite
words and a sequence (rn)n∈N of positive real numbers converging to 0 such that

Mπin,rn(X) ∩B(0, 1)→ T

in Hausdorff distance. Since X satisfies the WBNC, there exists M > 0, such that

#Φ(πin, rn) 6M,

for all n ∈ N. Hence, there is K ∈ {1, . . . ,M} such that #Φ(πin, rn) = K for infinitely
many n. In other words, there exists a sequence (nk)k∈N of natural numbers such that
#Φ(πink , rnk) = K for all k ∈ N. Write

Φ(πink , rnk) = {ϕjink
}Ki=1

for all k ∈ N. By passing to a sub-sequence, if necessary, we see that for every i ∈
{1, . . . ,K}, there exists a set Ti such that

(Mπink ,rnk
◦ ϕj1nk

, . . . ,Mπink ,rnk
◦ ϕjKnk

)(XK) ∩B(0, 1)K → T1 × · · · × TK

in Hausdorff distance. Noting that

Mπink ,rnk
(X) ∩B(0, 1) =

K⋃
i=1

Mπink ,rnk
◦ ϕjink

(X) ∩B(0, 1)

for all k ∈ N, we see that (1) holds.
SinceXK is compact, we may assume that (ϕ−1

j1nk
(πink), . . . , ϕ−1

jKnk
(πink))→ (y1, . . . , yK) ∈

XK , and therefore for each i ∈ {1, . . . ,K} there exists a linear map Gi such that

(ϕ−1
j1nk
◦M−1

πink ,rnk
, . . . , ϕ−1

jKnk
◦M−1

πink ,rnk
)→ (G1 + y1, . . . , GK + yK),

in the uniform convergence in XK . Clearly,

ϕ−1
jink
◦M−1

πink ,rnk
(Mπink ,rnk

◦ ϕjink
(X) ∩B(0, 1)) ⊂ X,

so by taking the limit, we see that Gi(Ti) + yi ⊂ X which proves (2).
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Finally, to prove (3), denote by Ajink
the linear part of ϕjink

. Then, by the definition

of Φ(πink , rnk), we have that

‖rnkA
−1
jink
‖ = rnkα2(Ajink

)−1 > 1.

Since A 7→ ‖A‖ is continuous, we have ‖Gi‖ = limk→∞ ‖rnkA
−1
jink
‖ > 1 > 0 and, in

particular, rank(Gi) > 1 for all i ∈ {1, . . . ,K}.
Let us next assume that X is dominated. Fix i ∈ I and for simplicity, denote jink by

jk. First observe that the sequence (|jk|)k∈N is unbounded, since if it was bounded by
some number L ∈ N, we would have

rnk > α2(Ajk) > ( min
j∈{1,...,N}

α2(Aj))
L > 0

for all k ∈ N contradicting the fact that limk→∞ rnk = 0. By domination, there exist
C > 0 and 0 < τ < 1 such that

| det(rnkA
−1
jk

)| =
r2
nk

det(Ajk)
=

r2
nk

α1(Ajk)α2(Ajk)

6
α2(Ajk)

α1(Ajk) minj∈{1,...,N} α2(Aj)
6

C

minj∈{1,...,N} α2(Aj)
τ |jk|.

Since |jk| is unbounded, we see that rank(Gi) = 1. Finally, since rnkA
−1
jink

converges to

the linear map Gi, which is a rank one map, im(Gi) ∈ XF . �

We are now ready to prove Proposition 3.1.

Proof of Proposition 3.1. Let T ∈ Tan(X) and {Ti}i∈I be a tangent decomposition of T
given by Lemma 3.2. Notice that, since T =

⋃
i∈I Ti, we have dimH(T ) = maxi∈I dimH(Ti).

Let i ∈ I be the index which achieves this maximum. By Lemma 3.2, we have Gi(Ti)+yi ⊂
X ∩ (im(Gi) + yi) and hence,

dimH(Gi(Ti) + yi) 6 dimH(X ∩ (im(Gi) + yi)).

Since x 7→ Gix+ yi is bi-Lipschitz equivalent to projker(Gi)⊥ , we have

dimH(Ti) 6 dimH(R× projker(Gi)⊥(Ti))

= 1 + dimH(projker(Gi)⊥(Ti)) = 1 + dimH(Gi(Ti) + x).

Therefore,

dimH(T ) = dimH(Ti) 6 1 + dimH(X ∩ (im(Gi) + yi))

and we have shown the first claim. By Lemma 2.1, the second claim follows immediately
from the first claim. �

Example 3.3. In this example, we exhibit an affine IFS {ϕi = Ai+bi}3i=1 and its self-affine
set X satisfying the SOSC but not the WBNC such that (A1, A2, A3) is dominated, and
such that

1 + sup
x∈X
V ∈XF

dimH(X ∩ (V + x)) < dimA(X) = 2. (3.1)
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Figure 1. The self-affine set of Example 3.3. The first level cylinders
are illustrated by dashed lines.

In particular, the upper bound of Proposition 3.1 can fail if the WBNC is replaced by
the SOSC.

Let us define {ϕ1, ϕ2, ϕ3} as ϕi = Ai + bi, where

A1 =

(
1
3

1
4

0 1
4

)
, A2 =

(
1
4 0
1
4

1
3

)
, A3 =

(
1
3

1
12

1
4

1
2

)
and b1 = b2 =

(
0
0

)
, b3 =

(
7
12
1
4

)
.

Let X be the associated self-affine set; see Figure 1. Since 0̄ = (0, 0) is a fixed point for
both ϕ1 and ϕ2, we have 0̄ ∈ ϕ1(X) ∩ ϕ2(X) and X does not satisfy the SSC. However,
X clearly satisfies the SOSC with the open set U = (0, 1)2. Furthermore, it is not difficult
to see that for any M ∈ N there exists r > 0 such that

#Φ(0̄, r) >M,

so X does not satisfy the WBNC.
For ε > 0, let Cε ⊂ RP1 be the cone with boundaries 〈(1,−ε)〉, 〈(−ε, 1)〉 and containing

〈(1, 1)〉. It is easy to see that Cε is strongly invariant with respect to (A1, A2, A3) for
every sufficiently small ε > 0. Furthermore, AiC0 ⊂ C0 for every i = 1, 2, 3. Let D0 be the
cone with boundaries 〈(3,−1)〉, 〈(1,−3)〉 and containing 〈(1,−1)〉. It is easy to see that
A−1
i D0 ⊂ D0 and (3,−1), (1,−3) are eigenvectors of A1 and A2 respectively. Therefore

XF is not a singleton, and furthermore, by Lemma 2.3, XF ⊆ D0. Simple algebraic
manipulations show that

‖Ai‖ < 0.62, min
V ∈C0

‖Ai|V ‖ >
1

3
, and max

V ∈D0

‖A−1
i |V ‖

−1 6
7

12

√
5

17
< 0.32 (3.2)
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for every i = 1, 2, 3.
Let us now show that dimA(X) = 2. As X ⊂ R2, it is enough to prove dimA(X) > 2,

and for this, by recalling Lemma 2.1, we construct a suitable weak tangent. For n ∈ N,
let us define Tn : R2 → R2 by setting

Tn(x) = M0̄,3−n(x) = 3nx

for all x ∈ R2, and let T be the Hausdorff limit of the sequence Tn(X) ∩ B(0, 1). By
showing T = B(0, 1) ∩ [0, 1]2, we have proved that dimA(X) > dimH(T ) > 2 as required.

Consider the set Σ1,2
n = {i1 · · · in ∈ Σn : ik ∈ {1, 2} for all k ∈ {1, . . . , n}}. Let e1 = (1, 0)

and e2 = (0, 1). Denote by Q1 = B(0, 1)∩ [0, 1]2 the closed first quadrant of the unit ball.

Note that for every i 6= j ∈ Σ1,2
n ,

Tn(ϕi(U)) ∩ Tn(ϕi(U)) = ∅ and
⋃

i∈Σ1,2
n

Tn(ϕi(U)) ∩B(0, 1) = Q1,

since ‖Aiek‖ > (1/3)n for every k = 1, 2 and i ∈ Σ1,2
n by (3.2). Then for any i ∈ Σ1,2

n ,
the central angle of the sector Tn(ϕi(U)) ∩B(0, 1) is

αi := ^(〈Aie1〉, 〈Aie2〉) = arcsin

(
|det(Ai)|

‖Aie1‖‖Aie2‖

)
6 arcsin

((
3

4

)n)
, (3.3)

where in the last inequality, we used (3.2). Now, let y ∈ Q1 be arbitrary. For every

n ∈ N, there exists i ∈ Σ1,2
n such that y ∈ Tn(ϕi(U)). Since X contains a continuous

path between the points (0, 0) and (1, 1), there is a point x ∈ ∂B(0, 1) ∩ Tn(ϕi(U))
such that Tn(ϕi(X)) ∩ B(0, 1) contains a continuous path between the points (0, 0)
and x. In particular, together with (3.3), this implies that there exists a point zn ∈
Tn(ϕi(X)) ∩B(0, 1) such that

|y − zn| 6 arcsin

((
3

4

)n)
.

Therefore, Tn(X) ∩B(0, 1)→ Q1, which implies that dimA(X) > dimA(Q1) = 2.
Finally, it is enough to show that there exists c < 1 such that for every V ∈ XF and

x ∈ X, dimH(X ∩ (V + x)) 6 c. Fix any V ∈ XF and x ∈ X. For every n ∈ N and

i ∈ Σ1,2
n , by (3.2)

diam
(
ϕi(U) ∩ (V + x)

)
= ‖Ai|A−1

i V ‖ diam
(
U ∩ (A−1

i V + ϕ−1
i (x))

)
6 ‖Ai|A−1

i V ‖
√

2 = ‖A−1
i |V ‖−1

√
2 6 (0.32)n

√
2.

Hence, for every s > − log 3
log 0.32

Hs(X ∩ (V + x)) 6 lim
n→∞

2s/2
∑
i∈Σn

‖A−1
i |V ‖−s 6 lim

n→∞
2s/23n(0.32)sn = 0,

and so dimH(X ∩ (V + x)) 6 − log 3
log 0.32 < 1.
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Remark 3.4. For the purpose of this remark, let us briefly recall some definitions. For
each A ∈ GL2(R) and s > 0, the singular value function is

ϕs(A) =


α1(A)s, if 0 6 s 6 1,

α1(A)α2(A)s−1, if 1 < s 6 2,

(α1(A)α2(A))s/2, if s > 2.

The value ϕs(A) represents a measurement of the s-dimensional volume of the ellipse
A(B(0, 1)). For each A ∈ GL2(R)N and s > 0, the pressure is

P (A, s) = lim
n→∞

1

n
log

∑
i∈Σn

ϕs(Ai).

As the singular value function is sub-multiplicative, the limit above exists by Fekete’s
lemma. It is also easy to see that the pressure P (A, s) is continuous and strictly decreasing
as a function of s with P (A, 0) > 0 and lims→∞ P (A, s) = −∞. We may thus define the
affinity dimension by setting dimaff(A) to be the minimum of 2 and the unique s > 0 for
which P (A, s) = 0. If X is a self-affine set, then dimaff(X) denotes the affinity dimension
of the associated tuple of matrices. Also recall that a self-affine set is strongly irreducible
if no finite collection of lines in RP1 is preserved by all of the matrices in the tuple.

In [10, Example 3.3], the authors answer a question posed by Fraser in [19], by
giving an example of a self-affine set X satisfying dimL(X) < dimH(X) = dimaff(X) <
dimA(X), where dimL denotes the lower dimension; see [19, §3.1] for the definition. Their
construction is strongly based on an underlying self-affine carpet, so it is an interesting
question, whether this behaviour is possible when X has no reducible subsystems. By
an argument similar to the calculation of the Assouad dimension in Example 3.3, it
is easy to see that X has a line segment as a weak tangent at the point (1, 1), and
therefore dimL(X) 6 1 by [20, Theorem 1.1]. Moreover, since the matrices (A1, A2, A3)
have pairwise distinct eigenvectors, the strong irreducibility follows and by [7, Theorem
1.1] and a simple calculation using (3.2), we have 1 < dimH(X) = dimaff(X) < 2.
Thus, Example 3.3 shows that, in the absence of strong separation, the behaviour
dimL(X) < dimH(X) = dimaff(X) < dimA(X) is possible for self-affine systems with no
reducible subsystems.

4. Self-affine sets with large projections

In this section, we show that if all the projections of the self-affine set have maximal
dimension, then we have equality in Proposition 3.1. We also show that the supremum in
the statement can be replaced by a maximum. The following theorem is the main result
of this section and Proposition 4.5 below assures that it generalizes Bárány, Käenmäki,
and Yu [10, Theorem 3.2] by relaxing the SSC to a separation condition which allows
slight overlapping.
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Theorem 4.1. Let X be a dominated self-affine set satisfying the WBNC such that
dimH(X) > 1 and dimH(projV ⊥(X)) = 1 for all V ∈ XF , then

dimA(X) = 1 + max
x∈X
V ∈XF

dimH(X ∩ (V + x))

= 1 + max
x∈X

V ∈RP1\YF

dimA(X ∩ (V + x)).

The proof of the theorem uses ideas introduced in [10, §5], but the absence of strong
separation induces some complications. We essentially split [10, Lemma 5.2], which
assumes the SSC, into Lemmas 4.3 and 4.4 and make two key observations to work
around the lack of SSC. First of all, the intuition behind [10, Lemma 5.2] is that the
weak tangent sets of the self-affine set X have a comb-like structure, where the slices
of the tangent set along the direction of the teeth of the comb have full dimension, and
the dimensions of the slices in directions perpendicular to the teeth have dimension
comparable to some slice of the self-affine set in a Furstenberg direction. By Lemma
3.2, we know that under the bounded neighborhood condition, the situation is similar
in the sense that the weak tangents are finite unions of these comb-like sets. Secondly,
in [10, §5], to show that the teeth of the combs point to the same direction, the authors
use the fact that any slice of the self-affine set has dimension strictly smaller than one,
which does not have to be true in our setting. We work around this using domination in
the following lemma.

Lemma 4.2. Let X be a dominated self-affine set and (ik)k∈N be a sequence of infi-
nite words in Σ. If (nk)n∈N is an increasing sequence of integers such that the limit
limk→∞ ϑ1(ik|nk) exists, then limk→∞ ϑ1(ik) exists and

lim
k→∞

ϑ1(ik) = lim
k→∞

ϑ1(ik|nk).

Proof. Let (nk)k∈N be a strictly increasing sequence of integers such that the limit
W := limk→∞ ϑ1(ik|nk) ∈ RP1 exists and let ε > 0. By Lemma 2.2(1), ϑ1(ik) is well
defined for every k ∈ N and, by the uniform convergence, we may choose k0 ∈ N large
enough such that

^(ϑ1(ik|nk), ϑ1(ik)) <
ε

2
for all k > k0. By the assumption, by making k0 larger if needed, we also have

^(ϑ1(ik|nk),W ) <
ε

2
,

for all k > k0. Thus, by the triangle inequality, we have

^(ϑ1(ik),W ) 6 ^(ϑ1(ik), ϑ1(ik|nk)) + ^(ϑ1(ik|nk),W ) < ε

and therefore, limk→∞ ϑ1(ik) = W . �

We abuse notation by denoting the intersection of T ∈ Tan(X) with the open unit ball
by T ◦. Similarly, if {Ti}i∈I is a tangent decomposition of T , then we let T ◦i = Ti\∂B(0, 1).
This should not cause any confusion, since we will not be referring to the actual interior
of T at any point. Furthermore, by the rank, image, and kernel of an affine map, we
mean the rank, image, and kernel of its linear part.
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Lemma 4.3. Let X be a dominated self-affine set satisfying the WBNC such that,
dimH(X) > 1, and dimH(projV ⊥(X)) = 1 for all V ∈ XF . Let T ∈ Tan(X) and {Ti}i∈I
be a tangent decomposition of T given by Lemma 3.2. Then for every i ∈ I there exists
Wi ∈ YF such that

dimH(T ∩ (Wi + y)) = 1

for all y ∈ T ◦i .

Proof. Let (ik)k∈N be a sequence of infinite words in Σ and (rk)k∈N be a sequence of
positive real numbers converging to zero such that

Mπik,rk(X) ∩B(0, 1)→ T.

Recall from the proof of Lemma 3.2 that there exists a sequence (nk)k∈N of integers and,
for each i ∈ I, finite words jink ∈ Σ∗ and sets Ti such that

Mπink ,rnk
◦ ϕjink

(X) ∩B(0, 1)→ Ti

for all i ∈ I in Hausdorff distance. Fix y ∈ T ◦ and choose i ∈ I such that y ∈ T ◦i . Since
y 6∈ ∂B(0, 1), there is δ > 0 depending only on y such that B(y, 2δ) ⊂ B(0, 1). Therefore,
there are infinite words jk ∈ [jink ] such that Mπink ,rnk

(π(jk))→ y and

Mπink ,rnk
(X ∩B(πjk, δrnk)) ⊂Mπink ,rnk

◦ ϕjink
(X) ∩B(0, 1) (4.1)

for all large enough k ∈ N. Let mk > nk be the unique integer which satisfies

α1(Ajk|mk ) 6 δrnk < α1(Ajk|mk−1
). (4.2)

By again passing to a sub-sequence, if necessary, there exists an affine map Py such that

Mπink ,rnk
◦ ϕjk|mk → Py

in the uniform convergence in X. By compactness and (4.1), we have y ∈ Py(X) ⊂ Ti
and, by domination, we have

α2(Ajk|mk )

α1(Ajk|mk )
6 Cτmk ,

so in particular det(r−1
nk
Ajk|mk )→ 0 as k →∞. Also, by (4.2) and [8, Corollary 2.4], there

exists a constant C > 0 such that we have ‖r−1
nk
Ajk|mk‖ > Cδ for all k ∈ N. Therefore,

we see that rank(Py) = 1. Let Wy = im(Py) and note that by Lemma 2.3, Wy ∈ YF .
Recall that Py(X) and projker(Py)⊥(X) are bi-Lipschitz equivalent, so by the assumption,

dimH(T ∩ (Wy + y)) > dimH(Py(X) ∩ (Wy + y))

> dimH(projker(Py)⊥(X)).
(4.3)

Let us show that ker(Py) ∈ XF . Observe that the linear part of the map Mπink ,rnk
◦ϕjk|mk

is r−1
nk
Ajk|mk and notice that this sequence converges to the linear part of Py in the uniform

convergence in X. Denote by Ay the linear part of Py and let v be a unit vector in
the kernel of Ay. Since the eigenspaces of (r−1

nk
Ajk|mk )T (r−1

nk
Ajk|mk ) converge to the

eigenspaces of ATyAy and since ker(Ay) = ker(ATyAy) is the eigenspace corresponding to
the singular value 0, we see that there is a sequence of unit vectors vk → v, such that

ATjk|mk
Ajk|mk vk = α2(Ajk|mk )2vk
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for all k ∈ N. Let us define wk = α2(Ajk|mk )−1Ajk|mk vk. By the previous, we have

‖wk‖ = α2(Ajk|mk )−1‖Ajk|mk vk‖ = α2(Ajk|mk )−1(Ajk|mk vk · Ajk|mk vk)
1
2

= α2(Ajk|mk )−1〈ATjk|mkAjk|mk vk | vk〉
1
2 = α2(Ajk|mk )−1(α2(Ajk|mk )−1vk · vk)

1
2

= (vk · vk)
1
2 = ‖vk‖ = 1,

where · is the standard inner product on R2. Therefore, by possibly passing to a
sub-sequence, we may assume that wk converges to some unit vector w and that

(Ajk|mk )−1

‖(Ajk|mk )−1‖
→ By,

for some 2× 2 matrix By. Since A−1 = (A−1
1 , . . . , A−1

N ) is dominated, we see as before,
that det(‖(Ajk|mk )−1‖−1(Ajk|mk )−1)→ 0, so By has rank at most one. Since

(Ajk|mk )−1

‖(Ajk|mk )−1‖
·
Ajk|mk vk

α2(Ajk|mk )
= vk,

by taking limits, we have that By(w) = v, so v is a unit vector in the image of By.
Therefore By is a rank 1 matrix and ker(Ay) = 〈v〉 = im(By) ∈ XF . By the assumption
and (4.3), we have that dimH(T ∩ (Wy + y)) > 1. The upper bound is trivial, since
T ∩ (Wy + y) is contained in a line.

Finally, let us show that Wy is constant in T ◦i . By passing to a sub-sequence, if
necessary, we may assume that limk→∞ ϑ1(jink) = Wi for some Wi ∈ YF . Notice that Wi

does not depend on the choice of y ∈ T ◦i . By Lemma 2.3 (or rather its proof), it is easy
to see that

Wy = im(Py) = lim
k→∞

ϑ1(jk|mk).

Therefore, by Lemma 4.2, we have im(Py) = limk→∞ ϑ1(jk). Noting that jink = jk||jink |
and, applying Lemma 4.2 again, we see that

Wy = lim
k→∞

ϑ1(jk) = lim
k→∞

ϑ1(jink) = Wi

finishing the proof. �

Lemma 4.4. Let X ⊂ R2 be compact. Then for every x ∈ X and V ∈ RP1 there exist
T ∈ Tan(X) such that

dimH(T ∩ V ) > dimA(X ∩ (V + x)) > dimH(X ∩ (V + x)).

Proof. Let V ∈ RP1 and x ∈ X and, by recalling Lemma 2.1, let Tmax ∈ Tan(X∩(V +x))
be a weak tangent, which satisfies dimH(Tmax) = dimA(X ∩ (V + x)). Let (xk)k∈N be a
sequence of points in X ∩ (V + x) and (rk)k∈N be a sequence of positive real numbers
converging to zero such that

Mxk,rk(X ∩ (V + x)) ∩B(0, 1)→ Tmax

in Hausdorff distance. Since xk ∈ V + x for all k ∈ N, and each Mxk,rk is a similarity, we
have Mxk,rk(V + x)→ V . Let T be an accumulation point of the sequence Mxk,rk(X) ∩
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B(0, 1). Then T ∈ Tan(X) and, by compactness, Tmax ⊂ T ∩ V . Therefore, we have

dimH(X ∩ (V + x)) 6 dimA(X ∩ (V + x)) = dimH(Tmax) 6 dimH(T ∩ V )

as required. �

We are now ready to prove the main theorem of this section.

Proof of Theorem 4.1. By Lemma 2.1, we have

dimA(X) = max
T∈Tan(X)

dimH(T ), (4.4)

so we may choose Tmax ∈ Tan(X) such that dimA(X) = dimH(Tmax). Recalling Proposi-
tion 3.1, there are x ∈ X and V ∈ XF ⊂ RP1 \ YF such that

dimA(X) = dimH(Tmax) 6 1 + dimH(X ∩ (V + x)). (4.5)

By Lemma 4.4, there exists a tangent set T such that

dimH(T ∩ V ) > dimA(X ∩ (V + x)) > dimH(X ∩ (V + x)).

If dimH(T ∩V ) = 0, then trivially dimH(T ) > 1 + dimH(X ∩ (V +x)) = 1, by Lemma 4.3.
Therefore we may assume that dimH(T ∩ V ) > 0. Notice that T ∩ V ∩ ∂B(0, 1) consists
of at most two points, so dimH(T ◦ ∩ V ) = dimH(T ∩ V ). Let 0 < s < dimH(T ∩ V )
and let µ be a Frostman measure on T ◦ ∩ V ; see [36, Theorem 8.8]. Let {Ti}i∈I be a
tangent decomposition of T given by Lemma 3.2. Since T =

⋃
i∈I Ti, at least one of the

sets T ◦i ∩ V has positive µ-measure. Let T ◦i be such a set and let Wi ∈ YF be the line
given by Lemma 4.3. Since V 6∈ YF , we have V 6= Wi and so, by the Marstrand’s slicing
theorem [11, Theorem 3.3.1],

1 = dimH(T ∩ (Wi + y)) 6 dimH(T )− s

for µ-almost every y ∈ T ◦i ∩ V . In particular, since µ(T ◦i ∩ V ) > 0, such a point y exists.
By letting s ↑ dimH(T ∩ V ), we get

dimA(X) > dimH(T ) > 1 + dimH(T ∩ V )

> 1 + dimA(X ∩ (V + x)) > 1 + dimH(X ∩ (V + x)).

Combining this with (4.5), we get

dimA(X) = 1 + dimA(X ∩ (V + x)) = 1 + dimH(X ∩ (V + x))

as claimed.
It remains to show that dimA(X ∩ (W + y)) 6 dimH(X ∩ (V + x)) for all y ∈ X and

W ∈ RP1 \ YF . By repeating the above proof for such y and W , we find a tangent set T
such that

1 + dimA(X ∩ (W + y)) 6 dimH(T ) 6 dimH(Tmax) 6 1 + dimH(X ∩ (V + x)),

where we used (4.4) in the middle inequality. This finishes the proof. �

To finish this section, let us verify that Theorem 4.1 generalizes Bárány, Käenmäki,
and Yu [10, Theorem 3.2]. The proof is based on Bárány, Hochman, and Rapaport [7,
Proposition 6.6].
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Figure 2. The graph of the Takagi function for λ = 2
3 .

Proposition 4.5. If X is a dominated self-affine set satisfying the WBNC and the SOSC
such that dimH(X) > 1 and XF is not a singleton, then

dimA(X) = 1 + max
x∈X

V ∈RP1\YF

dimH(X ∩ (V + x)).

Proof. Since X satisfies the SOSC, [10, Theorem 2.18] shows that

dimH(projV ⊥(X)) = 1

for all V ∈ RP1 \ I, where I = {W ∈ RP1 : W = AiW for all i ∈ {1, . . . , N}} and
contains at most one element. If I = ∅, then the claim follows from Theorem 4.1. Bárány,
Käenmäki and Yu [10, Lemma 2.11] show that if XF is not a singleton, then I is non
empty if and only if the matrices Ai are of the form

Ai =

(
ai bi
0 di

)
,

possibly after a change of basis, where 0 < |di| < |ai| < 1, and the matrices are not
simultaneously diagonalizable, and clearly in this case, I = YF . Since XF ⊂ RP1 \ YF ,
Theorem 4.1 gives the claim. �

5. Assouad dimension of the Takagi function

As an application of Theorem 4.1, which connects the Hausdorff dimension of the
slices to the Assouad dimension of the set, we are now able to study slices of the Takagi
function. The following result, which is the first part of Theorem 1.1, follows immediately
from Theorem 4.1 after verifying the assumptions of the theorem.
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Theorem 5.1. If Tλ is the Takagi function, then

dimA(Tλ) = 1 + max
x∈Tλ
V ∈XF

dimH(Tλ ∩ (V + x))

= 1 + max
x∈Tλ
V ∈RP1

dimA(Tλ ∩ (V + x)).

The second result of this section, which implies the second part of Theorem 1.1, gives
an explicit upper bound for the Assouad dimension of the Takagi function. In particular,
it follows that the Assouad dimension is always strictly smaller than 2.

Theorem 5.2. If Tλ is the Takagi function, then

max
x∈Tλ
V ∈RP1

dimH(Tλ ∩ (V + x)) 6
log(2nλ − 1)

log 2nλ
< 1,

where

nλ =

⌈
log 2(Kλ +Mλ)

− log λ

⌉
> 2,

Kλ =
∑

k∈N 2−kλ−k = (2λ− 1)−1, and Mλ = maxx∈[0,1] Tλ(x) = (3(1− λ))−1.

The prerequisite in the proof of the above theorems is to express the Takagi function
as a self-affine set. Let Tλ : [0, 1]→ R be the Takagi function for the parameter 1

2 < λ < 1

as defined in (1.1). Let A = (A1, A2) ∈ GL2(R)2, where

A1 =

(
1
2 0
1
2 λ

)
and A2 =

(
1
2 0
−1

2 λ

)
,

and observe that, as 1
2 < λ, both matrices have two real eigenvalues with different absolute

values. Furthermore, the contraction by λ is realized precisely on the y-axis which is
invariant under both matrices. We define affine maps ϕ1, ϕ2 : R2 → R2 by setting

ϕ1(x) = A1(x) and ϕ2(x) = A2(x) + (1
2 ,

1
2),

for all x ∈ R2. A straightforward calculation shows that

Tλ(x2 ) = x
2 + λTλ(x), and Tλ(x2 + 1

2) = 1
2 −

x
2 + λTλ(x).

It follows that ϕ1(x, Tλ(x)) = (x2 , Tλ(x2 )) and ϕ2(x, Tλ(x)) = (x2 + 1
2 , Tλ(x2 + 1

2)), so

Tλ ⊂ R2 is the self-affine set associated to the affine IFS (ϕ1, ϕ2). Observe that, by
induction, we have

Ai =

(
2−|i| 0∑|i|

k=1(−1)i|i|−k+1+12−kλ|i|−k λ|i|

)
,

A−1
←−
i

=

(
2|i| 0∑|i|

k=1(−1)ik2|i|−kλ−k λ−|i|

)
.

(5.1)

for all i ∈ Σ∗. We begin verifying the assumptions of Theorem 4.1 by showing that Tλ is
dominated.
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Lemma 5.3. There exists C > 1 such that

λ|i| 6 α1(Ai) 6 Cλ
|i| and C−12−|i| 6 α2(Ai) 6 2−|i|

for all i ∈ Σ∗. In particular, Tλ is dominated.

Proof. Let i ∈ Σ∗ and recall that α1(Ai) = ‖Ai‖. The lower bound for α1(Ai) follows

from the fact that λ|i| is an eigenvalue of Ai. Similarly, since α2(Ai) = ‖A−1
i ‖−1, the

upper bound for α2(Ai) is trivial as 2|i| is an eigenvalue of A−1
i . We prove the upper

bound for α1(Ai) and only remark that the proof of the lower bound for α2(Ai) follows

similarly. Let s(i) =
∑|i|

k=1(−1)i|i|−k+12−kλ|i|−k and notice that

|s(i)| 6
|i|∑
k=1

2−kλ|i|−k 6 λ|i|
∞∑
k=1

2−kλ−k = Kλλ
|i|

for all i = i1 · · · i|i| ∈ Σ∗. Writing y = (y1, y2) ∈ S1, we see that

‖Aiy‖2 = |(2−|i|y1)2 + (s(i)y1 + λ|i|y2)2|

= |2−2|i|y2
1 + s(i)2y2

1 + 2s(i)λ|i|y1y2 + λ2|i|y2
2|

6 (2−2|i| + |s(i)|2)y2
1 + 2|s(i)|λ|i||y1y2|+ λ2|i|y2

2

6 λ2|i| +K2
λλ

2|i| + 2Kλλ
2|i| + λ2|i|

= (K2
λ + 2Kλ + 2)λ2|i|,

so the claim holds with C =
√

(Kλ + 1)2 + 1 > 1. Finally, since

α2(Ai) 6
( 1

2λ

)|i|
α1(Ai),

we see that Tλ is dominated. �

Let us next determine the Furstenberg directions of the Takagi function. For a given
t ∈ R, let Vt = 〈(1, t)〉 ∈ RP1 be the line with slope t passing through the origin, and let
V∞ = 〈(0, 1)〉 ∈ RP1 be the y-axis. Recall also the definition of Kλ from the formulation
of Theorem 5.2.

Lemma 5.4. If Tλ is the Takagi function, then

XF = {Vt ∈ RP1 : t ∈ [−Kλ,Kλ]}
is a closed projective interval and YF = {V∞} is a singleton.

Proof. Let i ∈ Σ and observe that, by (5.1), we may define

Bi = lim
n→∞

2−nA−1
←−
i|n

=

(
1 0∑∞

k=1(−1)ik2−kλ−k 0

)
.

Since Tλ is dominated by Lemma 5.3 and limn→∞ η1(A−1
←−
i|n

) = (1, 0), it follows from

Lemma 2.3 that the word i determines an element Vi = im(Bi) of the set XF by

Vi = 〈Bi(1, 0)〉 = 〈1,
∞∑
k=1

(−1)ik2−kλ−k〉.
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Hence, it is clear that for any V ∈ {Vt ∈ RP1 : t ∈ [−Kλ,Kλ]}, there exists i ∈ Σ such
that V = Vi ∈ XF .

For the other inclusion, let V ∈ XF . By the definition of XF , we find a sequence
(cn)n∈N of positive real numbers, a sequence (in)n∈N of finite words in = in1 · · · in|in| ∈ Σ∗,

and a linear map A of rank one such that A = limn→∞ cnA
−1
←−
in

and V = im(A). Passing

through a sub-sequence, if necessary, we see that

lim
n→∞

2−|in|A−1
←−
in

=

(
1 0

limn→∞
∑n

k=1(−1)i
n
k 2−kλ−k 0

)
,

where the limit limn→∞
∑n

k=1(−1)i
n
k+12−kλ−k exists. In particular, cn2−|in| → c ∈ R\{0}

and A is a constant multiple of the above matrix, which finishes the proof.
For YF , let i ∈ Σ and using (5.1) define

Bi = lim
n→∞

λ−nAi|n =

(
0 0∑n

k=1(−1)in−k+1+12−kλ−k 1

)
.

Since im(Bi) = V∞, we have {V∞} ⊂ YF . For the other inclusion, as before, if V ∈ YF ,
we find a sequence (cn)n∈N of positive real numbers, a sequence (in)n∈N of finite words
in = in1 · · · in|in| ∈ Σ∗, and a linear map A of rank one such that A = limn→∞ cnAin and

V = im(A). Passing through a sub-sequence, if necessary, we see that

lim
n→∞

λ−|in|Ain =

(
0 0∑n

k=1(−1)i
n
n−k+1+12−kλ−k 1

)
,

and since im(A) = V∞, the proof is finished. �

To finish verifying the assumptions of Theorem 4.1 for the Takagi function, it suffices
to show that the Takagi function satisfies the weak bounded neighborhood condition.
This is the purpose of the following lemma.

Lemma 5.5. The Takagi function Tλ satisfies the BNC.

Proof. Let C > 1 be the constant of Lemma 5.3. Fix x ∈ Tλ and 0 < r < C−1, and let
k ∈ N be the smallest natural number satisfying

2kC−1 > 1.

Define

Φn(x, r) = {ϕi : 2nC−12−|i| 6 r < 2nC−12−|i|+1 and ϕi(X) ∩B(x, r) 6= ∅}

for all n ∈ N. It follows from Lemma 5.3 that Φ(x, r) ⊂
⋃k
n=0 Φn(x, r), so it suffices to

show that the cardinality of Φn(x, r) is uniformly bounded for all n ∈ {0, . . . , k}. For
each n ∈ {0, . . . , k}, let mn be the unique integer satisfying

2nC−12−mn 6 r < 2nC−12−mn+1. (5.2)

Then clearly Φn(x, r) = {ϕi : i ∈ Σmn and ϕi(X) ∩ B(x, r) 6= ∅}. We observe from
the construction that each ϕi with i ∈ Σmn maps Tλ inside a unique set of the form
[ k
2mn ,

k+1
2mn ] × R, where k is an integer satisfying 0 6 k < 2mn . Therefore, (5.2) implies

that B(x, r) can intersect at most

2mnr 6 2mn2nC−12−mn+1 6 C−12k+1,
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of the sets ϕi(X) with i ∈ Σmn . Since the upper bound is independent of x and r, the
set Tλ satisfies the BNC. �

We are now ready to prove Theorem 5.1.

Proof of Theorem 5.1. It follows from Lemmas 5.3, 5.4, and 5.5 that the Takagi function
Tλ is a dominated self-affine set satisfying the BNC such that XF is a non-trivial projective
interval. Furthermore, since the Takagi function is continuous, Tλ(0) = 0 = Tλ(1)
and, by [37] (see also Lemma 6.7), Mλ = maxx∈[0,1] Tλ(X) = 1

3(1−λ) > 0, we see that

dimH(projV ⊥(Tλ)) = 1 for all V ∈ RP1. Therefore, by Theorem 4.1, we have

dimA(Tλ) = 1 + max
x∈Tλ
V ∈XF

dimH(Tλ ∩ (V + x))

= 1 + max
x∈Tλ

V ∈RP1\YF

dimA(Tλ ∩ (V + x)).

Furthermore, by Lemma 5.4, YF is a singleton containing only the y-axis V∞. Since Tλ
is a graph of a function, we have dimA(Tλ ∩ (V∞ + x)) = dimA({x}) = 0 for all x ∈ Tλ,
which concludes the proof. �

To finish this section, we prove Theorem 5.2.

Proof of Theorem 5.2. Since Tλ is a graph of a function, it suffices to show that

dimH(Tλ ∩ (V + x)) 6
log(2nλ − 1)

log 2nλ
(5.3)

for all x ∈ Tλ and V ∈ RP1 \ {V∞}. We write

Σn(A) = {i ∈ Σn : ϕi(Tλ) ∩A 6= ∅}
for all A ⊂ R2 and n ∈ N. Let us first show by induction that

#Σknλ(V + x) 6 (2nλ − 1)k, (5.4)

for all k ∈ N, x ∈ Tλ and V ∈ RP1 \ {V∞}.
First let k = 1, x ∈ Tλ and V ∈ RP1 \ {0}. By symmetry, we may assume that V = Vt,

with t > 0 and without loss of generality, we may also assume that x = (0, y) for some
y ∈ R so that

Vt + x = {(s, ts+ y) : s ∈ R}.
Since #Σnλ = 2nλ , it suffices to show that there exists at least one i ∈ Σnλ such that
ϕi(Tλ) ∩ (Vt + x) = ∅. Assume without loss of generality, that ϕi1(Tλ) ∩ (Vt + x) 6= ∅,
where i1 = 1|nλ . From (5.1), we may deduce that ϕi1(Tλ) is contained in the rectangle
[0, 2−nλ ]× [0, (Kλ+Mλ)λnλ ], and since ϕi1(Tλ)∩(Vt+x) 6= ∅, we have y 6 (Kλ+Mλ)λnλ .
Write x 1

2
= (1

2 ,
1
2) and let i = 12. Since Tλ(1

2) = 1
2 , we have x 1

2
∈ Tλ. In fact,

ϕi|nλ (1) = (1
2 ,

1
2).

It is also a simple exercise to show that ϕi|nλ (0) > 1
2 . Therefore, if 1

2 t + y < 1
2 , then

ϕi|nλ (X) ∩ (Vt + x) = ∅. On the other hand, if t1
2 + y > 1

2 , then

t > 1− 2y > 1− 2(Kλ +Mλ)λnλ > 0
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by the choice of nλ. This means that the line Vt + x has a positive slope. Since
ϕi2(Tλ) ⊂ [1 − 2−nλ , 1] × [0, (Kλ + Mλ)λnλ ] by symmetry, where i2 = 2|nλ , and since
t(1− 2nλ) + y > 1

2 > (Kλ +Mλ)λnλ , we have ϕi2(Tλ) ∩ (Vt + x) = ∅ which finishes the
proof for k = 1.

Let us then assume that (5.4) holds for k ∈ N. Let x ∈ Tλ and V ∈ RP1 \ {0}. To
finish the proof of (5.4), we have to show that #Σ(k+1)nλ(V + x) 6 (2nλ − 1)k+1. Notice
that trivially

Σ(k+1)nλ = {ij ∈ Σ(k+1)nλ : i ∈ Σknλ and j ∈ Σnλ}. (5.5)

Let i ∈ Σknλ . If i 6∈ Σknλ(V + x), then ij 6∈ Σ(k+1)nλ(V + x) for all j ∈ Σnλ , so we
may assume that i ∈ Σknλ(V + x). Since ϕi is a bijection, we have for any j ∈ Σnλ ,

that ϕij(Tλ) ∩ (V + x) 6= ∅ if and only if ϕj(Tλ ∩ ϕ−1
i (V + x)) 6= ∅. Since ϕ−1

i is affine,

there exists xi ∈ Tλ and Vi ∈ RP1 \ {V∞} such that ϕ−1
i (V + x) = Vi + xi, and thus

ϕij(Tλ) ∩ (V + x) 6= ∅ if and only if j ∈ Σnλ(Vi + xi). Since this is true for all i ∈ Σknλ ,
we have, by (5.5) and the fact that the claim holds for Σnλ(Vi + xi) and Σknλ(V + x),
that

#Σ(k+1)nλ(V + x) =
∑

i∈Σknλ (V+x)

#Σnλ(Vi + xi)

6 #Σknλ(V + x) · (2nλ − 1) 6 (2nλ − 1)k+1.

This concludes the proof of (5.4).
Let us then show (5.3) by relying on (5.4). It follows from the construction that for

any k ∈ N and i ∈ Σknλ , the image ϕi(Tλ) is contained in a vertical strip of width 2−knλ .

For any V = Vt ∈ RP1 \ {V∞}, we therefore have

diam(ϕi(Tλ) ∩ (Vt + x)) 6 2−knλ
√
t2 + 1. (5.6)

Thus {ϕi(Tλ) ∩ (Vt + x)}i∈Σknλ (Vt+x) is a 2−knλ
√
t2 + 1-cover of Tλ ∩ (Vt + x) which

together with (5.4) shows that

N2−knλ
√
t2+1(Tλ ∩ (Vt + x)) 6 #Σknλ(Vt + x) 6 (2nλ − 1)k.

Taking logarithms, dividing by − log(2−knλ
√
t2 + 1), and taking the limit as k → ∞

yields

dimH(Tλ ∩ (Vt + x)) 6 dimM(Tλ ∩ (Vt + x)) 6
log(2nλ − 1)

log 2nλ

as claimed. �

6. Dimension conservation

Let µ be the uniform Bernoulli measure on Σ = {1, 2}N, that is, µ is the unique Borel

probability measure with the property that µ([i]) = 2−|i| for all i ∈ Σ∗. Let π : Σ→ Tλ
be the canonical projection onto the Takagi function. It is evident that ν = π∗µ is the
length measure on the x-axis lifted to the Takagi function. The following result, which by
(1.3) and Lemma 5.4 is a restatement of Theorem 1.2, is the main result of this section.
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Theorem 6.1. If Tλ is the Takagi function and ν = π∗µ is the canonical projection of
the uniform Bernoulli measure, then

max
x∈Tλ
V ∈RP1

dimH(Tλ ∩ (V + x)) = dimH(Tλ)− 1

if and only if

dimloc((projV ⊥)∗ν, projV ⊥(x)) > 1

for all x ∈ Tλ and V ∈ XF .

This section is devoted to the proof of this theorem. We start with an auxiliary lemma
whose proof is standard. Recall that

Σn(A) = {i ∈ Σn : ϕi(Tλ) ∩A 6= ∅}

for all A ⊂ R2 and n ∈ N.

Lemma 6.2. For every x ∈ Tλ and V ∈ XF , we have

dimM(Tλ ∩ (V + x)) = lim inf
n→∞

log #Σn(V + x)

n log 2

and

dimM(Tλ ∩ (V + x)) = lim sup
n→∞

log #Σn(V + x)

n log 2
.

Proof. Let x ∈ Tλ and V ∈ XF . By Lemma 5.4, there is t ∈ [−Kλ,Kλ] such that
V = Vt = 〈(1, t)〉. Similarly as in (5.6), we have

diam(ϕi(Tλ) ∩ (V + x)) 6 2−n
√
t2 + 1

for all i ∈ Σn(V + x). Therefore, the collection {ϕi(Tλ) ∩ (V + x)}i∈Σn(V+x) is a

2−n
√
t2 + 1-cover of Tλ ∩ (V + x), which proves the upper bounds. The lower bounds

follow by observing that if {Ui} is any 2−n-cover of Tλ ∩ (V + x), then every Ui intersects
at most two of the sets in {ϕi(Tλ) ∩ (V + x)}i∈Σn(V+x). �

The above lemma connects Σn(V +x) to the Minkowski dimensions of the slices. As we
further wish to connect the pointwise dimensions on Tλ to the slices, we are interested in
estimating the number of words i not in Σn(V +x) for which ϕi(Tλ) is still relatively close
to V + x. The r-neighborhood of a set A ⊂ R2 is denoted by [A]r = {x ∈ R2 : |x− y| 6 r
for some y ∈ A}. For n ∈ N and c > 0, we define the set of bad words at level n by

Badn,c = Σn([V + x]cλn) \ Σn(V + x).

We say that a bad word i at level n is generated at level k if k ∈ {1, . . . , n} is the smallest
number such that i|k 6∈ Σk(V + x), and we denote the set of these length n words by

Badkn,c. Since every bad word at level n is generated at exactly one level k 6 n, we have

# Badn,c =

n∑
k=1

# Badkn,c .

The following lemma is the key observation in our analysis.
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Lemma 6.3. For every x ∈ Tλ and V ∈ RP1 \ {V∞} there are constants c,K > 0 such
that

# Badkn,c 6 K ·#Σk(V + x)

for all n, k ∈ N with k 6 n.

The proof of the lemma is technical and takes several pages. Trying not to disrupt the
flow of the presentation, we have postponed it into Subsection 6.1. Lemma 6.3 allows us to
connect the pointwise dimensions of the length measure on the x-axis lifted to the Takagi
function with the Minkowski dimensions of the slices. This is the content of the following
proposition. It generalizes a similar result of Manning and Simon [34, Proposition 4] for
the Sierpiński carpet to the self-affine regime.

Proposition 6.4. If Tλ is the Takagi function and ν = π∗µ is the canonical projection
of the uniform Bernoulli measure, then

dimloc((projV ⊥)∗ν,projV ⊥(x)) +
log 1

2

log λ
dimM(Tλ ∩ (V + x)) =

log 1
2

log λ

and

dimloc((projV ⊥)∗ν,projV ⊥(x)) +
log 1

2

log λ
dimM(Tλ ∩ (V + x)) =

log 1
2

log λ

for all x ∈ Tλ and V ∈ RP1 \ {V∞}.

Proof. Let x ∈ Tλ and V ∈ RP1 \ {V∞}, and note that

(projV ⊥)∗ν(B(projV ⊥(x), r)) = ν([V + x]r)

for all r > 0. Write c =
√

2(Kλ +Mλ). It is easy to see that for every i ∈ Σn we have

diam(ϕi(Tλ)) 6 cλn,

so for any i ∈ Σn(V + x), the cylinder ϕi(Tλ) is contained in [V + x]cλn . Since the
ν-measure of ϕi(Tλ) is 2−n, we have

ν([V + x]cλn) >
∑

i∈Σn(V+x)

ν(ϕi(Tλ)) > 2−n ·#Σn(V + x).

Therefore

log ν([V + x]cλn)

log cλn
6
−n log 2

log cλn
+

log #Σn(V + x)

log cλn

=
n log 1

2

log cλn
−
n log 1

2

log cλn
log #Σn(V + x)

n log 2
,

and taking the limit superior or the limit inferior, Lemma 6.2 yields the respective upper
bounds.

The lower bound is more subtle and for that we apply Lemma 6.3. Let c,K > 0 be as in
Lemma 6.3. Since the collection {ϕi(X) : i ∈ Σn(V +x)∪Badn,c} covers Tλ ∩ [V +x]cλn ,
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Lemma 6.3 shows that

ν([V + x]cλn) 6
∑

i∈Σn(V+x)

ν(ϕi(Tλ)) +
∑

i∈Badn,c

ν(ϕi(Tλ))

= 2−n ·#Σn(V + x) + 2−n ·# Badn,c

= 2−n ·#Σn(V + x) + 2−n
n∑
k=1

# Badkn,c

6 2−n ·#Σn(V + x) + 2−nK
n∑
k=1

#Σk(V + x)

6 2−n(Kn+ 1) ·#Σn(V + x).

Taking logarithms, dividing by cλn, and taking the limits then gives the desired lower
bounds. �

We are now ready to prove Theorem 6.1.

Proof of Theorem 6.1. Let us first assume that

dimloc((projV ⊥)∗ν, projV ⊥(x)) > 1

for all x ∈ Tλ and V ∈ XF . Then Proposition 6.4 and (1.3) give us

dimH(Tλ ∩ (V + x)) 6 dimM(Tλ ∩ (V + x))

= 1− log λ

log 1
2

dimloc((projV ⊥)∗ν, projV ⊥(x))

6 1 +
log λ

log 2
= dimH(Tλ)− 1,

for all x ∈ Tλ and V ∈ XF . Since Tλ is a graph of a function and recalling the proof of
Theorem 4.1, this estimate extends to all V ∈ RP1. Therefore, by Theorem 5.1,

dimH(Tλ)− 1 6 dimA(Tλ)− 1 = max
x∈Tλ
V ∈RP1

dimH(Tλ ∩ (V + x)) 6 dimH(Tλ)− 1

and the claim follows.
Let us then assume that

max
x∈Tλ
V ∈RP1

dimH(Tλ ∩ (V + x)) = dimH(Tλ)− 1. (6.1)

If x ∈ Tλ and V ∈ XF are such that

dimloc((projV ⊥)∗ν, projV ⊥(x)) < 1,

then, by Proposition 6.4, (1.3), (6.2), and Theorem 5.1, we have

dimM(Tλ ∩ (V + x)) > 1− log λ

log 1
2

= 1 +
log λ

log 2
= dimH(Tλ)− 1

= max
x∈Tλ
V ∈RP1

dimH(Tλ ∩ (V + x)) = max
x∈Tλ
V ∈RP1

dimA(Tλ ∩ (V + x))

which is a contradiction. �
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6.1. Proof of Lemma 6.3. It remains to prove Lemma 6.3. The proof we give is quite
technical, but the tools are elementary. The following geometric lemma allows us to
simplify the problem. Write RP1

Θ = {〈(1, t)〉 ∈ RP1 : |t| 6 Θ} for all Θ > 0 and let
Kλ > 0 be as in Theorem 5.2.

Lemma 6.5. For any Θ > Kλ there is a constant C = C(Θ) > 0 such that for every
n ∈ N, i = i1 · · · in ∈ Σn, r > 0, x ∈ R2, and Vt ∈ RP1

Θ there exists y ∈ R2 such that

ϕ−1
i ([Vt + x]r) ⊂ [Vti + y]Cλ−nr,

where ti =
∑n

k=1(−1)ik2−kλ−k + (2λ)−nt. Furthermore, we have Vti ∈ RP1
Θ.

Proof. It follows from (5.1), that ϕ−1
i maps Vt + x to a line Vti + y with slope ti =∑n

k=1(−1)ik2−kλ−k + (2λ)−nt, and since ϕ−1
i expands vertical distances by λ−n, a simple

geometric argument shows that by taking C =
√

Θ2 + 1, we have

ϕ−1
i ([Vt + x]r) = [Vti + y] √

t2+1√
t2i+1

λ−nr
⊂ [Vti + y]Cλ−nr.

If |t| 6 Kλ, then Vti ∈ XF by Lemma 2.2 and therefore, |ti| 6 Kλ 6 Θ by Lemma 5.4.
Furthermore, if 1

2λ−1 = Kλ < |t| 6 Θ, then

|ti| 6
n∑
k=1

(2λ)−k + (2λ)−n|t| = 1− (2λ)−n

2λ− 1
+ (2λ)−n|t|

= (1− (2λ)−n)Kλ + (2λ)−n|t| 6 |t| 6 Θ.

Therefore, Vti ∈ RP1
Θ. �

Fix x ∈ Tλ and V ∈ RP1 \ {V∞}. Note that V ∈ RP1
Θ for some Θ > Kλ. Define

Badkn,c(i) = {ij ∈ Σn : j ∈ Σn−k and ϕij(Tλ) ∩ [V + x]cλn 6= ∅} (6.2)

for all i ∈ Σk and k 6 n. To prove Lemma 6.3 it suffices to show that there are constants
c,K > 0 such that # Badkn,c(i) 6 K for all k 6 n, since in this case, we have

# Badkn,c =
∑

i∈Badkk,c

# Badkn,c(i) 6
∑

i∈Σk(V+x)

# Badkn,c(i) 6 K ·#Σk(V + x).

Moreover, by (6.3) and Lemma 6.5, we have

Badkn,c(i) ⊂ {ij ∈ Σn : j ∈ Σn−k([Vti + y]Ccλn−k)},

so in particular, # Badkn,c(i) 6 #Σn−k([Vti + y]Ccλn−k), where Vti ∈ RP1
Θ. Note also that

if i ∈ Badkk,c, then we have Tλ ∩ (Vti + y) = ∅. Therefore, the following lemma implies
Lemma 6.3.

Lemma 6.6. For any Θ > Kλ there are constants C = C(Θ) > 0 and K = K(Θ) ∈ N
such that for every V ∈ RP1

Θ and x ∈ R2 satisfying Tλ ∩ (V + x) = ∅, we have

#Σn([V + x]Cλn) 6 K

for all n ∈ N.
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The remainder of the paper is dedicated to the proof of Lemma 6.6. We first present
six geometric lemmas which further clarify the situation and then conclude the proof at
the end of the section. Let us recall the following result of Mishura and Schied [37].

Lemma 6.7. The Takagi function Tλ has exactly two maximizers, xmax = 1
3 and ymax = 2

3 ,

and its maximum value is Mλ = 1
3(1−λ) . Furthermore, imax = 12 and jmax = 21 are the

only infinite words with π(imax) = (xmax,Mλ) and π(jmax) = (ymax,Mλ).

Proof. The first part of the claim is proved in [37]. The fact that each maximum in Tλ
has a unique coding follows from the fact that the projection of the IFS {ϕ1, ϕ2} onto the
x-axis is the IFS which generates the dyadic intervals, and 1

3 and 2
3 have unique dyadic

codings imax = 12 and jmax = 21, respectively. �

In the following, we rely heavily on the mirror symmetry of Tλ. By Lemma 6.7,
the Takagi function restricted to [0, 1

2 ], ϕ1(Tλ), has a unique maximum at xmax. We
denote the point on the graph of Tλ corresponding to this maximum by xmax, that is
xmax = π(imax) = (xmax,Mλ). We write i1 = 1 and i2 = 2. Let Σ1

n = {i = i1 · · · in ∈
Σn : i1 = 1} and

Σ1
n(A) = {i ∈ Σ1

n : ϕi(Tλ) ∩A 6= ∅}
for all A ⊂ R2 and n ∈ N. For each x ∈ R2, V ∈ RP1 \ {V∞}, v ∈ V with |v| = 1, and
δ > 0 we define

C(x, v, δ) = {y ∈ R2 : (y − x) · v < (1 + δ2)−1/2|y − x|},

H+(x, V ) = {y ∈ R2 : v⊥ · (y − x) > 0},

H−(x, V ) = {y ∈ R2 : v⊥ · (y − x) < 0},

where v⊥ is the unique vector with positive second coordinate orthogonal to v. Further,
we let H−(x, V∞) and H+(x, V∞) denote the left open half-plane and the right open half-
plane centered at x, respectively. Finally, let C−(x, δ) = C(x, (−1, 0), δ) and C+(x, δ) =
C(x, (1, 0), δ).

Lemma 6.8. If x = (xmax, y), where y > Mλ, then Tλ ∩ C−(x, 1) = ∅.

Proof. Let A = R× (−∞,Mλ] and note that

Tλ ⊂ ϕ1(A) = {(x, y) ∈ R2 : x ∈ R and y 6 x+ λMλ}.

In particular, the graph of the Takagi function lies below the line satisfying the equation
y = x + λMλ. Note that the point xmax is on this line, so ϕ1(Tλ) lies below the line
V1 + xmax, and the claim follows. �

Lemma 6.9. Let Θ > 0, x ∈ R2, Vt ∈ RP1
Θ with t > 0, and A ⊂ H+(x, V0)∩H−(x, V∞).

There exists a constant C = C(Θ) > 0 such that for any r > 0 satisfying A∩ [V0 +x]r = ∅
we have A ∩ [Vt + x]Cr = ∅.

Proof. Let C = (
√

Θ2 + 1)−1. Since A is contained in the shaded area in Figure 3, it

suffices to show that h 6 r. Since the triangles are similar, we have h =
√
t2 + 1Cr 6√

Θ2 + 1Cr 6 r. �
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r/t V0 + x

x

Vt + x
r

Cr
h

Figure 3. The geometric observation of Lemma 6.9.

Lemma 6.10. Let x ∈ R2, δ > 0, and A ⊂ H−(x, V0) be such that A∩C−(x, δ) = ∅ and
A ∩ [V0 + x]r = ∅. Then for any 0 < ε < δ there exists a constant C = C(ε, δ) > 0 such
that for each 0 < t 6 δ − ε we have A ∩ [Vt + x]Cr = ∅.

Proof. Let C = ε
δ
√
δ2+1

. The claim follows from the following geometric observation.

Notice from Figure 4 that, since A is contained in the shaded area, it suffices to show
d > r

δ . Since the right-angled triangles with side lengths r and r/t, and ` and Cr are

similar, we have ` = C
√

1 + t−2r, and therefore

d =
r

t
− C

√
1 + t−2r =

(
1

t
− ε
√
t2 + 1

tδ
√
δ2 + 1

)
r >

(
δ − ε
tδ

)
r >

r

δ

as claimed. �

In the remaining lemmas we use the following notation. For n ∈ N we let iLn =
imax|2n−211, iRn = imax|2n−221, and iRRn = imax|2n−222. The geometric interpretation of
this is that ϕiLn

(Tλ) corresponds to the cylinder adjacent to ϕimax|2n(Tλ) on the left-hand

side, ϕiRn
(Tλ) to the cylinder on the right-hand side, and ϕiRRn

(Tλ) to the cylinder adjacent

to ϕiRn
(Tλ) on the right-hand side. In the following, for any x ∈ R2, we write

|x|y = | projV∞(x)|.
This is a seminorm on R2 and it becomes a norm if we identify points with equal y-
coordinates. The seminorm | · |y induces a translation invariant pseudometric in the usual
way. For x ∈ R2 and E ⊂ R2 we let disty(x,E) = infz∈E |x− z|y. For every x ∈ R2 and
r > 0, we have

By(x, r) = [V0 + x]r,

where By(x, r) denotes the open ball with center x and radius r in the pseudometric
induced by | · |y. In the sequel, we will repeatedly use the following simple fact: If
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V0 + x

x

Vt + x

Vδ + x

Cr
r/δ

r

` d

r/t

Figure 4. The geometric observation of Lemma 6.10.

ϕ : R2 → R2, ϕ(x) = Ax+ t, is an affine map, then

|ϕ(x1)− ϕ(x2)|y = |A(x1 − x2)|y. (6.3)

for all x1, x2 ∈ R2.

Lemma 6.11. There exists a constant C = C(λ) > 0 such that for any integer n > 1
and i ∈ {iLn , iRn , iRRn } we have

disty(xmax, ϕi(Tλ)) > Cλ2n.

Moreover, if i = iLn , then the claim holds also with n = 1.

Proof. Let us denote pn = ϕimax|2n(0,Mλ) = ϕiLn
(1,Mλ), let A = [0, 1]× [0,Mλ] and let

T be the open triangle determined by the points (1,Mλ), (2
3 ,Mλ), and (1,Mλ− 1

3). Note
that the affine map ϕiLn

maps T to a triangle determined by the points ϕiLn
(1,Mλ) = pn,

ϕiLn
(2

3 ,Mλ), and ϕiLn
(1,Mλ − 1

3). By Lemma 6.8, we have Tλ ⊂ A \ T which gives

ϕiLn
(Tλ) ⊂ ϕiLn

(A \ T ), and therefore

disty(pn, ϕiLn
(Tλ)) > min{|pn − ϕiLn

(2
3 ,Mλ)|y, |pn − ϕiLn

(1,Mλ − 1
3)|y};

see Figure 5 for illustration. Using equations (6.4) and (5.1), we have

|pn − ϕiLn
(1,Mλ − 1

3)|y = |ϕiLn
(1,Mλ)− ϕiLn

(1,Mλ − 1
3)|y

= |AiLn
(0, 1

3)|y =
λ2n

3
.
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Figure 5. Illustration of the proof of Lemma 6.11.

Similarly,

|pn − ϕiLn
(2

3 ,Mλ)|y = |ϕiLn
(1,Mλ)− ϕiLn

(2
3 ,Mλ)|y = |AiLn

(1
3 , 0)|y

=

(
(2λ)−1 + (2λ)−2 +

2n∑
k=3

(−1)k(2λ)−k
)

1

3
λ2n

=
(2λ)−2n + λ+ 1

3(2λ2 + λ)
λ2n >

λ+ 1

6λ2 + 3λ
λ2n

and therefore, we have

disty(pn, ϕiLn
(Tλ)) > min

{
1

3
,

λ+ 1

6λ2 + 3λ

}
λ2n. (6.4)

On the other hand, it follows by a simple calculation that ϕ12(xmax) = xmax, and therefore,
by induction, we have ϕimax|2n(xmax) = xmax for all n ∈ N. By (6.4) and (5.1), we have

|pn − xmax|y = |ϕimax|2n(0,Mλ)− ϕimax|2n(1
3 ,Mλ)|y = |Aimax

(
1
3 , 0
)
|y

=

∣∣∣∣ 2n∑
k=1

(−1)k(2λ)−k
∣∣∣∣λ2n

3
=

1− (2λ)−2n

3(2λ+ 1)
λ2n 6

λ2n

3(2λ+ 1)
.

By combining this with (6.5) and applying the reverse triangle inequality, we get

disty(xmax, ϕiLn
(Tλ)) > disty(pn, ϕiLn

(Tλ))− |pn − xmax|y

>

(
min

{
1

3
,

λ+ 1

6λ2 + 3λ

}
− 1

3(2λ+ 1)

)
λ2n

= min

{
2λ

6λ+ 3
,

1

6λ2 + 3λ

}
λ2n,

for any n ∈ N, where min{ 2λ
6λ+3 ,

1
6λ2+3λ

} > 0 for all λ ∈ (1
2 , 1).
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It follows from the construction, that disty(xmax, ϕiRn
(Tλ)) 6 disty(xmax, ϕiRRn

(Tλ))

(see Figure 5), so to finish the proof, it is enough to prove the claim for iRn . As before,
since T is mapped to the triangle determined by the points ϕiRn

(2
3 ,Mλ), ϕiRn

(1,Mλ), and

ϕiRn
(1,Mλ − 1

3), we see that

disty(xmax, ϕiRn
(Tλ)) > min{|xmax − ϕiRn

(2
3 ,Mλ)|y, |xmax − ϕiRn

(1,Mλ − 1
3)|y}. (6.5)

Write z = ϕimax|2n(1,Mλ) = ϕiRn
(0,Mλ). Now

|ϕiRn
(2

3 ,Mλ)− z|y = |ϕiRn
(2

3 ,Mλ)− ϕimax|2n(0,Mλ)|y = |AiRn
(2

3 , 0)|y

=
2

3

(
(2λ)−1 − (2λ)−2 +

2n∑
k=3

(−1)k(2λ)−k
)
λ2n

=
2

3

(2λ)−2n + 1− 1
2λ2

2λ+ 1
λ2n

and

|ϕiRn
(1,Mλ − 1

3)− z|y = |ϕiRn
(1,Mλ − 1

3)− ϕimax|2n(0,Mλ)|y = |AiRn
(1,−1

3)|y

=

(
(2λ)−1 − (2λ)−2 +

2n∑
k=3

(−1)k(2λ)−k − 1

3

)
λ2n

=

(
(2λ)−2n + 1− 1

2λ2

2λ+ 1
− 1

3

)
λ2n,

and a standard calculation shows that |ϕiRn
(2

3Mλ) − z|y > |ϕiRn
(1,Mλ − 1

3) − z|y. In

particular, by (6.6) and the reverse triangle inequality, we have disty(xmax, ϕiRn
(Tλ)) >

|xmax − ϕiRn
(2

3 ,Mλ)|y. Now

|xmax − z|y = |ϕimax|2n(1
3 ,Mλ)− ϕimax|2n(1,Mλ)|y

= |Aimax|2n(2
3 , 0)|y =

2

3
· 1− (2λ)−2n

2λ+ 1
λ2n,

and by using the reverse triangle inequality as before, we have

|xmax − ϕiRn
(2

3 ,Mλ)|y > |xmax − z|y − |ϕiRn
(2

3 ,Mλ)− z|y

>
2

3
·

1
2λ2
− 2(2λ)−2n

2λ+ 1
λ2n >

2

3
·

1
2λ2
− 2(2λ)−4

2λ+ 1
λ2n =

2λ− 1

4λ4
λ2n,

for any n > 1. Therefore, by choosing C = min{ 2λ
6λ+3 ,

1
6λ2+3λ

, 2λ−1
4λ4
} > 0, the claim

follows. �

Lemma 6.12. Let x ∈ R2 be such that Tλ ∩ (V0 + x) = ∅. Then there are constants
C,K > 0 depending only on λ such that

#Σn([V0 + x]Cλn) 6 K,

for all n ∈ N.
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Proof. It suffices to find a constant C > 0 such that

#Σ1
2n([V0 + x]Cλ2n) 6 K, (6.6)

for all n ∈ N, since then, by symmetry, for any n ∈ N we have #Σn([V0 + x]Cλn) 6 4K.
Let us first assume that Tλ ⊂ H+(x, V0), that is, the line V0 + x lies below Tλ. By
induction, it is easy to see that for any C 6 1

2λ the set Σ1
2n([V0 + x]Cλ2n) contains at

most the word i1.
For the other case Tλ ⊂ H+(x, V0) we show by induction that for every n ∈ N there

is a constant C > 0 such that the set Σ1
2n([V0 + x]Cλ2n) contains at most the word

imax|2n. By Lemma 6.11, we may choose a constant C > 0 such that for any n > 1 and
i ∈ {iLn , iRn , iRRn }, we have disty(xmax, ϕi(Tλ)) > Cλ2n. Moreover, if n = 1, then we
have disty(xmax, ϕiL1

(Tλ)) > Cλ2 and therefore, [V0 + xmax]Cλ2 = By(xmax, Cλ
2) does

not intersect the set ϕiL1
(Tλ). Since the only words in Σ1

2 are iL1 and imax|2, we see that

Σ1
2([V0 + xmax]Cλ2) contains at most the word imax|2. Since Tλ lies below V0 + xmax, this

is also true for any x ∈ R2 satisfying projV∞(x) > projV∞(xmax).

Now assume that the set Σ1
2(n−1)([V0+x]Cλ2(n−1)) contains at most the word imax|2(n−1).

Since Cλ2n < Cλ2(n−1), the only cylinders that could intersect [V0 + x]Cλ2n are the
ones corresponding to the children of imax|2(n−1), which are precisely the cylinders

determined by imax|2n, iLn , iRn , and iRRn . By relying on Lemma 6.11, we see that
[V0 + x]Cλ2n = By(x,Cλ

2n) does not intersect ϕiLn
(Tλ), ϕiRn

(Tλ) or ϕiRRn
(Tλ), which

finishes the proof. �

Proof of Lemma 6.6. Let Θ > Kλ, Vt ∈ RP1
Θ, and x ∈ R2 be such that Tλ ∩ (V + x) = ∅.

The case t = 0 follows from Lemma 6.12, so by symmetry we may assume that t > 0. We
first consider the case Tλ ⊂ H−(x, V0). Without loss of generality, we may assume that
the first coordinate of x is 1 and note that then Tλ ⊂ H+(x, V0)∩H−(x, V∞). By Lemma
6.12, there are constants c1,K > 0 such that #Σn([V0 + x]c1λn) 6 K for all n ∈ N and
therefore, by Lemma 6.9, there is a constant c2 > 0 such that #Σn([Vt + x]c1c2λn) 6 K
for all n ∈ N.

For the case Tλ ⊂ H−(x, V0), we let t0 = 0 and for any n ∈ N we define tn =
(2λ)n

(∑n
k=1(2λ)−k

)
. Further, let δ0 = 0 and

δn =
tn−1 + tn

2
.

Clearly δn is strictly increasing with n. Let k be the unique integer satisfying δk−1 6 t < δk.
Since t 6 Θ, there is a natural number N = N(Θ, λ) such that k 6 N . By a geometric
argument similar to the proof of Lemma 6.12, it is possible to show that there is a
constant C = C(Θ) > 0 such that Tλ ∩ [Vt + x]C = ϕi1|k(Tλ) ∩ [Vt + x]C . Therefore, by
Lemma 6.5, for any n > k and r < C we have

Σn([V + x]r) = {i1|kj ∈ Σn : ϕj(Tλ) ∩ (ϕ−1
i1|k([Vt + x]r)) 6= ∅} (6.7)

⊂ {i1|kj ∈ Σn : j ∈ Σn−k([Vti1|k
+ y]cλ−kr)}.

By Lemma 6.5 and the choice of k, we have

−1

2
(2λ)−k 6 ti1|k <

1

2
(2λ)−(k+1),
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and since k 6 N , we see that |ti1|k | 6 1− ε, where ε = (1− 1
2(2λ)N+1). By symmetry, we

may assume without loss of generality that 0 < ti1|k 6 1− ε and that projV0(y) = 1
3 . Let

c,K > 0 be as in Lemma 6.12. Then for any n > N , we have #Σn−k([V0 + y]cλn−k) 6 K
and, by applying Lemmas 6.8 and 6.10, we see that there exists a constant c > 0 such
that

#Σn−k([Vti1|k
+ y]cλn−k) 6 K.

In particular, using (6.8), we have

#Σn([V + x]cλn) 6 #Σn−k([Vti1|k
+ y]cλn−k) 6 K,

for all n large enough such that cλn−N < C, and the claim follows. �
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[10] B. Bárány, A. Käenmäki, and H. Yu. Finer geometry of planar self-affine sets. Preprint, available at

arXiv:2107.00983, 2021.
[11] C. J. Bishop and Y. Peres. Fractals in probability and analysis, volume 162 of Cambridge Studies in

Advanced Mathematics. Cambridge University Press, Cambridge, 2017.
[12] J. Bochi and N. Gourmelon. Some characterizations of domination. Math. Z., 263(1):221–231, 2009.
[13] J. Bochi and I. D. Morris. Continuity properties of the lower spectral radius. Proc. Lond. Math. Soc.

(3), 110(2):477–509, 2015.
[14] Z. Buczolich. Irregular 1-sets on the graphs of continuous functions. Acta Math. Hungar., 121(4):371–

393, 2008.
[15] E. de Amo, I. Bhouri, M. Dı́az Carrillo, and J. Fernández-Sánchez. The Hausdorff dimension of the

level sets of Takagi’s function. Nonlinear Anal., 74(15):5081–5087, 2011.
[16] E. de Amo, M. Dı́az Carrillo, and J. Fernández Sánchez. The Hausdorff dimension of the generalized

level sets of Takagi’s function. Real Anal. Exchange, 38(2):421–423, 2012/13.
[17] K. J. Falconer. Techniques in fractal geometry. John Wiley & Sons Ltd., Chichester, 1997.
[18] J. M. Fraser. Assouad type dimensions and homogeneity of fractals. Trans. Amer. Math. Soc.,

366(12):6687–6733, 2014.
[19] J. M. Fraser. Assouad Dimension and Fractal Geometry. Cambridge Tracts in Mathematics. Cam-

bridge University Press, 2020.
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